

WORKSHOP ON MEMBRANE SCIENCE USING X-RAY TECHNIQUES

August 16-18, 2004, Advanced Photon Source, Argonne National Laboratory

Biomembrane Problems Studied by X-ray Diffraction

Huey Huang Rice University

http://www.rice.edu/~hwhuang

Applications to membrane problems

- (0) Background—diffraction from lipid bilayers
- (1) Gramicidin-a passive ion channel
 1.1) Ion binding sites
 1.2) Non-conducting state
 1.3) Hydrophobic matching
 1.4) Membrane-mediated protein-protein interactions
- (2) Protein-lipid interactions--Hydrophobic Matching
- (3) Antimicrobial peptides
 3.1) Transmembrane pores
 3.2) Membrane thinning effect
 - 3.3) Pore structure
- (4) Membrane fusion problems 4.1) Stalk intermediate state

 - 4.2) Spontaneous curvatures of lipid mixtures
- (5) Collective chain dynamics by inelastic x-ray scattering

CONCLUSION

Lipids and Membranes

phosphate-headgroup

Levine and Wilkins, *Nature* 230, 69, 1971 Wilkins, Blaurock and Engelman, *Nature* 230, 72, 1971

(1) Gramicidin

Gramicidin is a 15a.a. long L-D-L-D alternate peptide that forms a head-to-head dimeric passive ion channel. It has been used for a case study of ion transport across membranes.

It has two ion binding sites, but they are not obvious from the molecular structure.

Electron density profiles by lamellar diffraction

1.1) Location of ion-binding sites

Olah et al., J. Mol. Biol. 218, 847 (1991)

1.2) What is the non-conduction state of gramicidin?

Answer: gramicidin monomers are beta-helices.

DLPC/GA and DLPC/G-boc

He et al., Biophys. Chem 49, 83 (1994)

1.3) Membrane thickness effect implies hydrophobic matching—a well accepted concept that has little direct evidence.

Huang., Biophys. J. 50, 1061 (1986)

In the fluid	phase	near	full
hydration:	•		

	PtP
pure DLPC	3.08nm
DLPC/GA	3.21nm
pure DMPC	3.52nm
DMPC/GA	3.27nm

Harroun et al., Biophys. J. 76, 937 (1999) 1.4) Hydrophobic matching implies membrane-mediated protein interactions, another well accepted concept with little direct evidence (e.g., Engelman et al., 1983; Chan et al., 1983).

In-plane scattering

Radial distribution function of gramicidin in DMPC and DLPC

Harroun et al., Biophys. J.76, 937 (1999)

(2) No hydrophobic matching for single helices!

WALP, a hydrophobic sequence of Leu and Lys of varying length, bordered at both ends by two Trps.

(3) Antimicrobial Peptides

Analysis of neutron diffraction from fluid membranes

$$I = \left| F(q_r) \right|^2 S(q_r)$$

Putative structures of pores formed by antimicrobial peptides Yang et al., Biophys. J. 81, 1475 (2001)

Toroidal model

3.2) Pore formation can be seen as membrane-mediated two-state micellization. At low P/L, the peptides are monomers on the interface. At high P/L, pores are formed like micelles. The membrane mediation is observed in the thinning effect.

Membrane thinning

Chen et al., Biophys. J. 84, 3751 (2003)

3.3) How to study the pore structure?

Induce inter-bilayer correlations.

From uncorrelated to long-range correlated.

Rhombohedral lattice of pores

Yang et al., Biophys. J. 79, 2002 (2000)

Hexagoanl ABC stacking

(4) Membrane Fusion Problems

Are these the intermediate states? Do peptides affect these states?

*This problem is related to gene delivery, drug delivery, and anti-viral drugs.

The first step of fusion

Removing the water molecules in between.

Hui et al., Science 212, 921 (1981)

DOPC/DOPE Mixtures

discovered in the last two years from the substrate-supported samples.

Yang et al., Biochemistry 42, 6631 (2003)

2D view

Yang and Huang, Science 297, 1877 (2002)

This experiment validates the stalk hypothesis for membrane fusion.

Distorted Hexagonal Phase

A_{DH} vs. x

Water distribution vs. lipid distribution

Water

Lipid

A bent monolayer of a lipid mixture demixes its components in reaching the minimum of free energy.

(5) Collective chain dynamics by in-plane inelastic X-ray scattering

Weiss et al., Biophys. J. 84, 3767 (2003)

Dispersion curves of the sound mode propagating in-plane

The soft modes imply that It requires no work to insert a small peptide in the bilayer interface as shown by Seelig's experiment.

Fischer et al., J. Membr. Biol. 165, 201 (1998)

CONCLUSION

- Synchrotron radiation is essential for membrane research. Two features are particularly desirable:
- 1) Energy tunable (5-15kev) GISAX beamline.
- 2) 0.5mev-resolution inelastic beamline.

Whodunit

Former and current Graduate Students:

Glenn Olah Yili Wu

Ke He

Steve Ludtke

Thad Harroun

William Heller

Lin Yang

Thomas Weiss

Lai Ding

Wangchen Wang

Deng Pan

Yang Song

Collaborators:

Fang-Yu Chen, NCU

Ming-Tao Lee, NCU

Wei-Ching Hong, NCU

Bob Lehrer, UCLA

Alan Waring, UCLA

Dave Worcester, UM, Columbia **Supported by:**

NIH, NSF, DOE, and Welch Foundation